Assessing comparable bioconcentration potentials for nanoparticles in aquatic organisms via combined utilization of machine learning and toxicokinetic models

نویسندگان

چکیده

Abstract The toxicokinetic (TK) model‐derived kinetic bioconcentration factor (BCF k ) provides a quantitatively comparable index to estimate the bioaccumulation potential of nanoparticles (NPs) that barely reach thermodynamic equilibrium in aquatic organisms, but experimental data are limited for various NPs. In present study, machine learning model was applied offer reliable silico predictions dynamic body burden diverse NPs derive corresponding parameters TK model. developed eXtreme Gradient Boosting‐derived (XGB‐TK) predict BCF results broad range metallic or carbonaceous NPs, with an appreciable prediction R 2 0.96. values were predicted based on random combination selected variable features, revealing their showed overall negative correlation NP density organism size. By applying importance analysis and partial dependence plots, size revealed be top essential features impact potential. conjunctively used XGB‐TK enabled prior comparison straightforward derivation dependency which could also guide mechanism exploration condition formulation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

diagnostic and developmental potentials of dynamic assessment for writing skill

این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...

15 صفحه اول

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Toxicokinetic Modeling Challenges for Aquatic Nanotoxicology

Nanotoxicity has become of increasing concern since the rapid development of metal nanoparticles (NPs). Aquatic nanotoxicity depends on crucial qualitative and quantitative properties of nanomaterials that induce adverse effects on subcellular, tissue, and, organ level. The dose-response effects of size-dependent metal NPs, however, are not well investigated in aquatic organisms. In order to de...

متن کامل

assessing metacognitive awareness and learning strategies as positive predictors in promoting l2 learners’ reading comprehension

the purpose of this thesis was to investigate how differently metacognitive, cognitive, and social/affective strategies affect l2 learners’ reading comprehension. to this end, the study employed a quasi-experimental design with a placement test as a proficiency test to find the homogeneity of groups. three classes were randomly selected as the experimental groups (n =90), and each class was tau...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SmartMat

سال: 2022

ISSN: ['2766-8525', '2688-819X']

DOI: https://doi.org/10.1002/smm2.1155